Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ming-Lai Fu,^{a,b} Wen-Tong Chen,^a Li-Zhen Cai,^a Guo-Wei Zhou,^a Guo-Cong Guo,^a* Jiang-Gao Mao^a and Jin-Shun Huang^a

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China, and ^bGraduate School of Chinese Academy of Sciences, Beijing 100039, People's Republic of China

Correspondence e-mail: gcguo@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.054 wR factor = 0.088 Data-to-parameter ratio = 24.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Aminoethylammonium tris(1,2-ethylenediamine)nickel(II) tetraselenoantimonate(V)

The new molecular metal chalcogenide, $(enH)[Ni(en)_3]-[SbSe_4]$ or $(C_2H_9N_2)[Ni(C_2H_8N_2)_3][SbSe_4]$, has been synthesized by a solvothermal reaction in an ethylenediamine/ methanol solution at 443 K. The structure contains tetrahedral $SbSe_4^{3-}$ anions and octahedral $[Ni(en)_3]^{2+}$ cations, as well as the monoprotonated ethylenediamine cation $[enH]^+$.

Received 15 April 2003 Accepted 25 April 2003 Online 23 May 2003

Comment

Chalcogenidometallates with open frameworks have attracted considerable interest as possible zeolite-like materials, for which highly interesting properties could be expected. In recent decades, a large number of thioantimonates exhibiting different degrees of fused Sb_xS_y anionic fragments have been reported (Sheldrick & Wachhold, 1997, 1998). These compounds contain a variety of polymeric complex anions. Compounds with one-, two-, and three-dimensional structures have been isolated and characterized. In contrast to the thioantimonates, the chemistry of heavier chalcogenoantimonates is less developed, probably due to the ease of hydrolysis of seleno- and telluroantimonates. Following solvothermal synthesis, the structures of $[Mn(en)_3]_2 \cdot [Mn_4(en)_9(Sb-$ Se₄)₄]·2H₂O (en is 1,2-ethylenediamine; Bensch et al., 1997), [enH][Mn(en)₃][SbSe₄] (Wendland & Bensch, 1998), Cu₂Sb-Se₃.0.5en and Cu₂SbSe₃·en (Chen et al., 1998), $[Fe(en)_3]_2(Sb_2Se_5)$ (Chen et al., 2000) and [enH][Fe(en)₃][SbSe₄] (Girard & Li, 1998) have been reported. In our recent investigations, we have obtained a new complex, namely (enH)[Ni(en)₃][SbSe₄], (I), which, to the best of our knowledge, is the first selenoantimonate containing $[Ni(en)_3]^{2+}$ as a structure-directing agent. Here we report the synthesis and crystal structure of (I).

The asymmetric unit of (I) comprises an isolated $[Ni(en)_3]^{2+}$, monoprotonated ethylenediamine cation, and an $SbSe_4^{3-}$ anion (Fig. 1). In the complex cation, the Ni atom is surrounded by six N atoms from three neutral ethylenediamine (en) ligands, which function as bidentate ligands, forming five-membered chelate rings, with Ni–N bond lengths ranging from 2.108 (3) to 2.130 (3) Å, giving a distorted

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of the title compound, with ellipsoids drawn at the 30% probability level. Hydrogen atoms have been omitted.

Figure 2

The crystal structure of the title compound, with intermolecular hydrogen bonds shown as dotted lines.

octahedral environment. The configuration of the en rings in $[Ni(en)_3]^{2+}$ is $\Lambda(\delta\delta\lambda)$ or $\Delta(\lambda\lambda\delta)$, according to Saito's description (Saito, 1979). It is noteworthy that the C-C bond distance [C11-C12 = 1.420 (8) Å] in the en ligand with λ configuration is significantly shorter than those [C15-C16 =1.506(5) Å and C13-C14 = 1.497(6) Å] in the other two en ligands with δ configuration. A similar situation was found in the configuration of $[Fe(en)_3]^{2+}$ in the compound [enH][Fe(en)₃][SbSe₄] (Girard & Li, 1998).

The Sb–Se distances of the tetrahedral $SbSe_4^{3-}$ anion in (I) range from 2.4722 (8) to 2.4810 (11) Å, consistent with those found in analogous compounds (Wendland & Bensch, 1998; Sheldrick & Wachhold, 1996). As shown in Fig. 2, the $[Ni(en)_3]^{2+}$ cations and their crystallographic inversion centerrelated species can be considered as forming cationic slabs in the *ab* plane, between which the $SbSe_4^{3-}$ and protonated ethylenediamine species are located. The protonated H atom is assigned to atom N21 rather than to atom N22, due to the closer cation-anion contact (2.54 Å; Pell & Ibers, 1996). Atom Se2 of the isolated SbSe₄³⁻ anion acts as a hydrogen-bond acceptor, forming an intermolecular hydrogen bond with the N atom of protonated enH⁺; N21···Se2ⁱ = 3.306 (6) Å, $H \cdot \cdot \cdot Se2^{i} = 2.54 \text{ Å and } N21 - H \cdot \cdot \cdot Se2 = 145^{\circ}$ [symmetry code: (i) 1 - x, -y, 1 - z].

Experimental

Single crystals of (I) were obtained under solvothermal conditions from a solution containing nickel (0.059 g, 1 mmol), antimony (0.122 g, 1 mmol) and selenium (0.237 g, 3 mmol). The reactants were weighed and mixed in a glove-box under a nitrogen atmosphere. The reactants were then loaded into a Teflon-lined steel autoclave and 3 ml of methanol/1,2-ethanediamine (volume ratio = 1:4) was added. The reaction took place at 443 K over a period of 4 d. The product was filtered off and washed with acetone. The title compound is unstable in air, and must be stored under a nitrogen atmosphere.

Crystal data

$C_2H_9N_2)[Ni(C_2H_8N_2)_3][SbSe_4]$	Z = 2
$M_r = 737.72$	$D_x = 2.238 \text{ Mg m}^{-3}$
Friclinic, $P\overline{1}$	Mo $K\alpha$ radiation
u = 8.829 (3) Å	Cell parameters from 2804
p = 9.644 (4) Å	reflections
r = 14.283 (5) Å	$\theta = 3.1–27.5^{\circ}$
$\alpha = 104.833 \ (14)^{\circ}$	$\mu = 8.75 \text{ mm}^{-1}$
$B = 92.357 \ (7)^{\circ}$	T = 293 (2) K
$\nu = 109.866 \ (11)^{\circ}$	Chip, orange
$V = 1094.7 (7) \text{ Å}^3$	$0.06 \times 0.04 \times 0.03 \text{ mm}$
Data collection	
Rigaku Mercury CCD	4908 independent reflections
diffractometer	3612 reflections with $I > 2\sigma(I)$
v scans	$R_{\rm int} = 0.051$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(CrystalClear; Rigaku, 2002)	$h = -11 \rightarrow 10$
$T_{\rm min} = 0.763, T_{\rm max} = 1.000$	$k = -12 \rightarrow 12$

 $T_{\rm min}=0.763,\;T_{\rm max}=1.000$ 8993 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0138P)^2$ $R[F^2 > 2\sigma(F^2)] = 0.054$ wR(F²) = 0.088 + 3.5795P] where $P = (F_o^2 + 2F_c^2)/3$ S = 1.00 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.90 \ {\rm e} \ {\rm \AA}^{-3}$ 4908 reflections $\Delta \rho_{\rm min} = -0.95 \text{ e} \text{ Å}^{-3}$ 199 parameters H-atom parameters constrained

 $l = -18 \rightarrow 17$

Table 1

Selected geometric parameters (Å, °).

Sb1-Se1	2.4733 (8)	Ni1-N14	2.124 (3)
Sb1-Se2	2.4722 (8)	Ni1-N15	2.124 (3)
Sb1-Se3	2.4810 (11)	Ni1-N16	2.130 (3)
Sb1-Se4	2.4791 (9)	C11-C12	1.420 (8)
Ni1-N11	2.123 (4)	C13-C14	1.497 (6)
Ni1-N12	2.112 (3)	C15-C16	1.506 (5)
Ni1-N13	2.108 (3)		
Se1-Sb1-Se2	106.19 (3)	N12-Ni1-N13	91.47 (13)
Se1-Sb1-Se3	111.96 (3)	N12-Ni1-N14	92.27 (13)
Se1-Sb1-Se4	111.69 (3)	N12-Ni1-N15	93.87 (13)
Se2-Sb1-Se3	109.05 (3)	N12-Ni1-N16	173.05 (13)
Se2-Sb1-Se4	106.54 (2)	N13-Ni1-N14	81.90 (14)
Se3-Sb1-Se4	111.11 (2)	N13-Ni1-N15	172.67 (13)
N11-Ni1-N12	81.69 (14)	N13-Ni1-N16	94.04 (13)
N11-Ni1-N13	93.06 (15)	N14-Ni1-N15	92.86 (14)
N11-Ni1-N14	172.06 (15)	N14-Ni1-N16	92.69 (13)
N11-Ni1-N15	92.68 (15)	N15-Ni1-N16	81.03 (12)
N11-Ni1-N16	93.78 (14)		

H atoms bonded to carbon/nitrogen were inserted at calculated positions with isotropic displacement parameters, riding on their parent atoms.

Data collection: *CrystalClear* (Rigaku, 2002); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXTL* (Siemens, 1994); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 20001007 and 20131020) and the Natural Science Foundation of Fujian Province (No. 2000-F006).

References

- Bensch, W., Näther, C. & Stahler, R. (1997). Chem. Commun. pp. 1773–1774.Chen, Z., Dilks, R. E., Wang, R. J., Lu, J. Y. & Li, J. (1998). Chem. Mater. 10, 3184–3188.
- Chen, Z., Wang, R. J., Huang, X. Y. & Li, J. (2000). Acta Cryst. C56, 1100– 1103.
- Girard, M. R. & Li, J. (1998). Main Group Met. Chem. 21, 231-233.
- Pell, M. A. & Ibers, J. A. (1996). Inorg. Chem. 35, 4559-4562.
- Rigaku (2002). CrystalClear. Version 1.35. Rigaku Corporation, Tokyo, Japan.
- Saito, Y. (1979). Inorganic Molecular Dissymmetry, pp. 56-59. Berlin: Springer-Verlag.
- Sheldrick, W. S. & Wachhold, M. (1996). Chem. Commun. pp. 607-608.
- Sheldrick, W. S. & Wachhold, M. (1997). Angew. Chem. Int. Ed. 36, 207-224.
- Sheldrick, W. S. & Wachhold, M. (1998). Coord. Chem. Rev. 176, 211-322.
- Siemens (1994). SHELXTL. Version 5. Siemens Analytical X-ray Instruments
- Inc., Madison, Wisconsin, USA. Wendland, F. & Bensch, W. (1998). Acta Cryst. C54, 317–319.